Climate Research Projects

Extreme Humid Heat Projections

2022 – Present

I am leading a world-class team to produce state-of-the-art projections of extreme humid heat at the neighborhood scale for the world’s cities, and to relate those projections to human morbidity and mortality thresholds. In other words, under different greenhouse gas emissions scenarios, when are specific urban neighborhoods in the world projected to become unlivable due to wetbulb temperatures beyond human endurance and/or survivability? This work is in partnership with the Red Cross Red Crescent.

To better understand the implications of this work, please read the first chapter of Kim Stanley Robinson’s novel, The Ministry of the Future.

This work is funded by NASA ROSES A.37: Health and Air Quality.

Ecological Forecasting

2018 – Present

I am leading a team to better translate Earth System Model projections into forecasts for specific ecosystems. We’re starting with coral reefs, identifying coral refugia from observationally weighted climate model ensembles. My team will produce state-of-the-art projections of where and when the world’s coral reefs will experience sustained bleaching-level and death-level stress from ocean heat waves and acidification. Locations with relatively lower projected stress from heat and acidification (refugia) will receive increased protection from local stressors such as overfishing and polluted runoff.

This work is funded by NASA ROSES A.8: Sustaining Living Systems.

Wildfire Prediction

2021 – Present

Leading a small team in a pilot project.

Severe Convection from Space

2017 – Present

In 2021, I began leading a team on a 3-year project to determine, from remote sensing, how the convective environment capable of producing extreme storms over the US midwest has been changing, and how those changes relate to global heating. This is continuation of work I began in 2017, to determine which environmental factors distinguish tornadic supercells from non-tornadic supercells. Elucidating such questions from remote sensing is challenging as existing and legacy atmospheric sounding satellites typically pass overhead several hours ahead of storm initiation. We deal with this temporal gap by tracing air parcels back from storm initiation to where they were when the satellite passed overhead, reassembling thermodynamics from these spatially disparate (but meteorologically connected) air parcels. 

This work is currently funded by NASA ROSES A.33 The Science of Terra, Aqua, and Suomi-NPP. Additional components have been and are funded by other NASA programs and NOAA.

Surface Biology and Geology

2021 – Present

Supporting mission design as Project Data Scientist.


2020 – Present

Cloud-based science data software-as-a-service system. I am co-leading design of the Analytics Service.

Satellite Data Fusion

2016 – Present

The objective of this project is to develop methods for fusing measurements of a single process (e.g. near-surface temperature, relative humidity, or vapor pressure deficit, a measure of plant stress) made by multiple satellites into a single, better product. In addition to the fundamental goal of improving how we extract information from satellite remote sensing, we are also producing optimal data records that will improve applications such as drought, fire, and agricultural forecasting.

This work is funded by NASA’s AIRS project.

Marine boundary layer stratocumulus-to-cumulus transition

2012 – Present

The objective of this project is to better understand the physics of stratocumulus clouds, especially factors controlling the transition of stratocumulus (overcast) to lower-albedo cumulus clouds in western subtropical ocean basins. Stratocumulus clouds reflect sunlight and help cool the Earth; if a warmer planet has less stratocumulus, it would mean increased warming for a given level of greenhouse gas emissions. We are currently using high-resolution geostationary data from the GOES-East imager in conjunction with air parcel tracking methods I developed in the tornadogenesis project to observe a large number of parcels transition from stratocumulus regimes to lower-albedo regimes; dissecting these transitions will allow us to more precisely understand the factors at work.

This work is funded by NASA.

Past Projects

Gravitational Waves

2004 – 2012

As a member of the LIGO Scientific Collaboration (Laser Interferometer Gravitational-wave Observatory), [please hyperlink] I led the searches for gravitational waves from magnetars (neutron stars that are also the strongest magnets in the universe) and supernovae (exploding stars). I also worked to improve the detectors and to calibrate them.

Chemistry of the Interstellar Medium


As an undergraduate physics major, I performed microwave spectroscopy with an early Fourier transform spectrometer I helped build to discover the precise rotational spectra of candidate molecules and radicals of interstellar gas clouds. These spectral frequencies were used to guide astronomical searches for those molecules and radicals.

Close Menu